In this paper we describe a generalization of a very powerful tool for the analysis of Hamiltonian dynamical systems: the theory of normal forms. Originally developed by Birkhoff in 1927 [1] who considered only nonresonant systems near an equilibrium point, the theory was brought into its classical form by Gustavson [2] who showed how to normalize1even in the presence of resonant frequencies. Later important contributions were made by Bryuno [3]. The Birkhoff-Gustavson normal form (BGNF) has received considerable attention because of its utility in finding approximate constants of motion [4,5,6,7,8] and quantizing nonlinear Hamiltonian systems [9,10,11,12,13].
The key idea of the theory is to systematically perform a series of
canonical transformations, thus bringing the Hamiltonian into a
particularly simple form, its ``normal form''.
In this context simplicity means the possibility
to read off an expression for a second integral of motion directly from
the normal form Hamiltonian.
More precisely, for a Hamiltonian in BGNF
the quadratic part of
is proven to be an integral of motion.
Gustavson considered an autonomous Hamiltonian system
of degrees of freedom in the vicinity of a stable equilibrium point,
such that in lowest order approximation the Hamiltonian can be
written as an
-dimensional harmonic oscillator, while the
anharmonic parts of the system are given by a power series of order
3 and higher in the coordinates
and the momenta
:
with real frequencies and
being a
homogoneous polynomial of degree
in
and
.
Gustavson's theory necessarily requires the quadratic part of
to be of the particular form (1b).
Only for this special
he can define his normal form, prove
normalizability and
show how to obtain (an asymptotic expression for) a second invariant.
In section 2.1 of this paper we will show
in detail how this restriction comes about.
Several attempts have been made to approach the problem from a more
general point of view, making it possible to normalize not only
Hamiltonians of the Gustavson type
[14,15,16,17,18].
However, until recently there has been no general method that could be
applied to Hamiltonians with an arbitrary term.
It is this problem that we will address and exemplify in the
following sections.
Similar (and more general) results have been obtained by Meyer
and Hall in [19], though their approach -- and especially
their proof of what corresponds to our main theorem (cf. section
2.3) -- is quite different from ours.
It is our goal to give a more easily readable account of the theory and to
demonstrate in some detail the practical application to a given
Hamiltonian and the calculation of the quasi-integral.
In section 2
we formulate the normalization process in terms of Lie operators and Lie
transformations and use these techniques to develop a generalized
approach, suitable for any
.
Section 3 is dedicated to the application of the
generalized normal form to a model system that cannot be analyzed by means
of the Birkhoff-Gustavson theory. As the model system we have chosen a
particular type of magnetic bottle that can be used as an ion trap in
laboratory experiments. Our main result from the normal form calculations
is the derivation of an expression for a formal integral of motion
up to and including the 14th order.
The convergence properties of this quasi-integral are
analyzed in section 3.2;
exhibits a surprisingly rich structure and can be used to reproduce
reasonably well the corresponding Poincaré plot.