On the power of normal form theory:

Simplification of a Hamiltonian dynamical system
using normal form theory and quasiintegrals of motion


by Martin Engel



Consider the well-known Størmer problem which is given by the Hamiltonian

\begin{eqnarray*}
H(\rho,z,p_\rho,p_z) & = & \frac{1}{2}\left(p_\rho^2+p_z^2\ri...
...ft(\mbox{\normalsize where} \quad
r = \sqrt{\rho^2+z^2}\right),
\end{eqnarray*}


completely describing the classical motion of a charged particle in the earth's magnetic field (which is assumed here to be a pure dipole field).

As the first step of our simplification procedure, we transform from the ordinary cylindrical polar coordinates $(\rho,\varphi\hspace*{-0.3cm}\times,z)$ used above to dipolar coordinates $(a,b)$ and expand the resulting expression in terms of these new coordinates and their corresponding canonically conjugate momenta $p_a$, $p_b$ (cf. G. Contopoulos, L. Vlahos, J. Math. Phys. 16 (1975) 1469-1474):

\begin{eqnarray*}
H(a,b,p_a,p_b) & = &
%**************************************...
...************************************************
+ {\cal O}(13)
\end{eqnarray*}

Now generalized normal form theory (U. M. Engel, B. Stegemerten, P. Eckelt, J. Phys. A: Math. Gen. 28 (1995) 1425-1448) can be applied to this transformed Hamiltonian, yielding the following most simple normal form for the Størmer problem:

\begin{eqnarray*}
G(a,b,p_a,p_b) & = &
%**************************************...
...************************************************
+ {\cal O}(13)
\end{eqnarray*}

The third, and final, step on our path towards maximum simplicity is the transformation of the above normal form into the corresponding quasiintegral of motion; for our little sample problem, a minute's thought will reveal that we have:

\begin{eqnarray*}
I(a,b,p_a,p_b) & = &
%**************************************...
...6 p_b p_a
+9417.975 b^2 a p_a^6
+292971.191 b^2 a p_b^2 p_a^4
\end{eqnarray*}

\begin{eqnarray*}
{}\mbox{{}\rule{2.6cm}{0.0001cm}{}}{} %ME
&&{}
+988776.6406...
...b^3 p_b^5 p_a^3
-109960281.2 b^3 p_b^7 p_a %ME \\ [-0.1cm]&&{}
\end{eqnarray*}

\begin{eqnarray*}%ME
{}\mbox{{}\rule{2.6cm}{0.0001cm}{}}{} %ME
&&{}
-14084153...
...***********************************************
+ {\cal O}(13)
\end{eqnarray*}

The most impressive simple structure of this tiny little formula and its evident meaningfulness immediately show the superiority of our simplification algorithm.



Martin Engel 1992-11-29, 2001-04-04, 2004-01-01